Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling

Franco Locatelli, Nabil Kabbara, Annalisa Ruggeri, Ardeshir Ghavamzadeh, Irene Roberts, Chi Kong Li, François Bernaudin, Christiane Vermylen, Jean-Hugues Dalle, Jerry Stein, Robert Wynn, Catherine Cordonnier, Fernando Pinto, Emanuele Angelucci, Gérard Socié, Eliane Gluckman, Mark C. Walters and Vanderson Rocha
Outcomes of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling

*Franco Locatelli¹, *Nabil Kabbara², Annalisa Ruggeri², Ardeshir Ghavamzadeh³, Irene Roberts⁴, Chi Kong Li⁵, Françoise Bernaudin⁶, Christiane Vermylen⁷, Jean-Hugues Dalle⁸, Jerry Stein⁹, Robert Wynn¹⁰, Catherine Cordonnier¹¹, Fernando Pinto⁴, Emanuele Angelucci¹², Gérard Socié¹³, Eliane Gluckman⁷, Mark C. Walters¹⁴*, Vanderson Rocha²,¹⁵* on behalf of Eurocord and European Blood and Marrow Transplantation (EBMT) group.

¹Pediatric Hematology-Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, University of Pavia, Italy
²Eurocord, Hôpital Saint Louis, Paris, France
³Hematology Oncology and Bone Marrow Transplant Department, Shariati Hospital, Teheran, Iran
⁴Hematology Department, Hammersmith Hospital, London, United Kingdom
⁵Pediatric Department, Prince of Wales Hospital, Shatin, Hong Kong
⁶Reference Center for sickle cell disease, Intercommunal Hospital, Créteil, France
⁷Pediatric hematology and oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
⁸Pediatric hematology Department, Hôpital Robert Debré, Paris, France
⁹Bone marrow transplantation unit, Schneider Children’s Medical Center of Israel, Petach-Tikva, Israel
¹⁰Royal Manchester Children’s Hospital, Manchester, United Kingdom
¹¹Hematology Department, Hôpital Henri Mondor, Créteil, France
¹²EBMT Hemoglobinopathy Registry
¹³Hematology-bone marrow transplantation Department, Hôpital Saint Louis, Paris, France
¹⁴Blood and marrow transplant program, Children’s Hospital and Research Center, Oakland, California, USA
¹⁵Haematology Department, Bone Marrow Transplant Unit, University of Oxford. Oxford, UK

FL and NK are first authors and MW and VR are senior authors who equally contributed to this paper.

**Running title:** CBT vs BMT in hemoglobinopathies

Address for correspondence: Prof. Franco Locatelli, University of Pavia, IRCCS Bambino Gesù Children’s Hospital, Piazzale Sant’Onofrio, 4, 00165 Rome, Italy. E-mail: franco.locatelli@opbg.net

**Research grants:** This work was partially supported by grants from AIRC (Associazione Italiana Ricerca sul Cancro) progetto 5xmille, CNR (Consiglio Nazionale delle Ricerche), MURST (Ministero dell’Università e della Ricerca Scientifica e Tecnologica), and IRCCS Ospedale Pediatrico Bambino Gesù to F.L. V.R. is funded by National Institute Health Research-Biomedical Research Centres (NIHR-BRC) funding scheme.
Key Points

- Patients with thalassemia major or sickle cell disease had excellent outcomes after both CBT and BMT from an HLA-identical sibling.
- Related cord blood transplantation is a suitable transplant option for patients with hemoglobinopathies.

Abstract

We analyzed the outcomes of 485 patients with thalassemia major (TM) or sickle cell disease (SCD) receiving HLA-identical sibling cord blood transplantation (CBT, n=96) or bone marrow transplantation (BMT, n=389). Compared to patients given BMT, CBT recipients were significantly younger (median age 6 versus 8 years, p=0.02), and were treated more recently (median year 2001 versus 1999, p<0.01). A higher proportion of patients with TM belonging to classes II-III of the Pesaro classification received BMT (44%) compared to CBT (39%, p<0.01). In comparison with patients receiving BMT (n=259, TM; n=130, SCD), those given CBT (n=66, TM; n=30, SCD) had slower neutrophil recovery, less acute graft-versus-host disease (GVHD) and none had extensive chronic GVHD. With a median follow-up of 70 months, the 6-year overall survival was 95% and 97% after BMT and CBT, respectively (p=0.92). The 6-year disease-free survival (DFS) was 86% and 80% in TM patients after BMT and CBT, respectively, while DFS in SCD patients was 92% and 90%, respectively. The cell dose infused did not influence outcome of patients given CBT. In multivariate analysis, DFS did not differ between CBT and BMT recipients. Patients with TM or SCD have excellent outcomes after both HLA-identical sibling CBT and BMT.
Introduction

Although improvements in supportive treatment have significantly improved the prognosis in thalassemia major (TM) and sickle cell disease (SCD) in developed nations,\textsuperscript{1-3} hematopoietic stem cell transplantation (HSCT) still remains the only proven curative treatment for these disorders.\textsuperscript{4-10} Since the first successful transplant performed in a child with TM by Thomas and colleagues in Seattle,\textsuperscript{4} more than 1000 patients with TM or SCD have been cured by HSCT, in most cases performed using an HLA-identical sibling donor with bone marrow (BM) as the stem cell source.\textsuperscript{11} More recently, BM transplantation (BMT) from an unrelated volunteer, selected by high-resolution molecular typing of class I and II HLA loci and stringent criteria of compatibility, also proved to be a possible alternative for selected patients with TM who lack a compatible family donor.\textsuperscript{10,12-14}

In the last two decades, cord blood (CB) from an HLA-identical sibling increasingly is being used as alternative source of hematopoietic cells for transplanting patients with either malignant or non-malignant hematological diseases.\textsuperscript{15-17} In particular, HLA-identical sibling CB transplantation (CBT) is associated with a low incidence of both acute and chronic graft-versus-host disease (GVHD), leading to a lower risk of fatal/life-threatening immune-mediated complications.\textsuperscript{16} After anecdotal reports of successful CBT in children with TM or SCD,\textsuperscript{18-20} a study from the Eurocord cooperative group, analyzing the outcome in 44 patients who had SCD or TM and were treated by CBT from a sibling donor, reported no fatal transplantation-related complications, suggesting that related CBT is a safe treatment for hemoglobin disorders.\textsuperscript{21}

So far, no study has comparatively analyzed the outcome of patients with hemoglobinopathies transplanted with either BM or CB cells from an HLA-identical sibling. The aim of this analysis was to investigate, after a long observation time, whether patients with TM or SCD have different probabilities of benefiting from HLA-identical sibling CBT or BMT.
Patients and Methods

Data concerning patient, donor and disease characteristics, as well as transplantation outcome, were collected by means of a standardized questionnaire of the EUROCORD Registry for each patient enrolled into this study. This study includes all patients with a diagnosis of either TM or SCD, who received family donor CBT between January 1994 and December 2005 in participating Institutions. Patients given CB cells associated to BM cells were not included in this study. Centers reporting CBT for hemoglobinopathies to Eurocord were invited to report all cases of BMT for the same indications in the same time period, in order to avoid any bias related to the period effect. CBT performed in USA were reported to the Sibling Donor Cord Blood Program in Oakland, California. The cohort of patients reported to the Eurocord registry included 411 patients; of them, 333 had received BMT and 78 CBT. Of these 411 patients, 310 had TM and 101 SCD, respectively. Seventy-four patients had been transplanted in North America and were reported to the Sibling Donor Cord Blood Program in Oakland, California: 56 of them were given BMT and 18 CBT; 16 and 58 were transplanted for TM or SCD, respectively. All patients included in this study were consecutive and no patient was excluded from the analysis by the participating Institutions. Transplantation was performed in 28 different Centers (see Appendix). The Eurocord registry collects the data on all consecutive CBT performed in Europe and thus all patients given this type of allograft should have been reported to the Registry. Concerning Oakland registry, it can be estimated that our cases represent around 37% of CBT performed for TM/SCD in North America. Forty-four of the 96 CBT recipients were reported in a previously published study (at that time with a median follow-up of 24 months) which analysed outcomes and factors influencing outcome of patients with hemoglobinopathies given this type of allograft. All patients with SCD given either CBT or BMT in North America have been previously reported (see also supplemental Table 1).

Parents of all patients included in this study were willing to have their children transplanted using an HLA-identical family donor; a detailed discussion of the risk/benefit ratio and of possible
complications (including loss of fertility) of transplantation was held with the physicians before proceeding with HSCT. Exclusion criteria included the presence of left ventricular ejection fraction lower than 40%, positive serology for HIV, uncontrolled bacterial, viral, or fungal infections, severe neurological, liver, lung and renal function impairment or a Karnofsky/Lansky score lower than 70. Informed consent was obtained from all patients’ parents or their legal guardian in accordance with the Declaration of Helsinki. The study received approval by the local institutional review board/ethical committee of each participating Center.

Prior to transplantation, all TM patients were assigned to one of the 3 classes of risk proposed by Lucarelli et al. on the basis of adherence to a program of regular iron chelation therapy, and whether or not there was liver enlargement or evidence of portal fibrosis by liver biopsy.

In the majority of patients in Europe, CB was obtained from local cellular therapy laboratories or cord blood banks. The methods of collecting, cryopreserving and storing CB varied among Centers. Usually, CB progenitors were thawed and washed following the procedure described by Rubinstein et al.

In all donor-recipient pairs, histocompatibility was determined by serology for HLA-A and -B loci and by DNA typing for HLA-DRB1 locus.

Engraftment of donor cells was assessed through the use of molecular methods that detect informative polymorphisms in regions known to contain short tandem repeats (STR). Patients’ peripheral blood mononuclear cells were analyzed for chimerism investigation. Individuals who exhibited more than a 95% donor profile by STR-PCR analysis were referred to as having full donor chimerism. Mixed chimerism was defined as greater than 5% recipient DNA. Graft failure was defined as undetectable DNA of donor origin on at least 2 occasions no less than 1 week apart.

BM or CB cells were infused after 48 and 72 hours following the last dose of cyclophosphamide (CY) and fludarabine (FLU), respectively.
Conditioning regimen and GVHD prophylaxis

Details about patient and donor characteristics, conditioning regimen, GVHD prophylaxis, and the median number of BM and CB nucleated cells infused, are reported in Table 1. Patients transplanted with CB cells were more likely to receive FLU- and thiotepa-based regimens than were BMT recipients (see Table 1 for details).

GVHD prophylaxis included cyclosporine-A (Cs-A) in 99% and 97% of BMT and CBT recipients, respectively; a significantly greater proportion of patients given BMT received also short-term methotrexate (MTX) for GVHD prophylaxis (see Table 1 for details). A large proportion of CBT recipients (62%) were given a Cs-A-only GVHD prophylaxis.

Anti-thymocyte globulin (ATG) or anti-lymphocyte globulin (ALG) was used more frequently in BMT than in CBT recipients (see also Table 1).

Definition of outcomes

The primary outcomes were: i) transplantation-related mortality (TRM), defined as all causes of death related to the transplantation procedure; ii) overall survival (OS), which was measured by the time interval between the date of transplantation and the date of death or the date of last follow-up for surviving patients; iii) disease-free survival (DFS) defined as the time interval from transplantation to first event (either death or graft failure, whichever occurred first) or last follow-up for surviving patients; and iv) event-free survival (EFS) defined as the time interval from transplantation to first event (either death or graft failure, or occurrence of extensive chronic GVHD whichever occurred first) or last follow-up for surviving patients. Other outcomes were: a) hematopoietic recovery: neutrophil and platelet recovery were analyzed separately, and defined by a neutrophil count greater than 0.5 x 10^9/L for three consecutive days, and an unsupported platelet count greater than 50 x10^9/l for seven consecutive days, respectively. b) graft failure defined as either the absence of hematopoietic reconstitution of donor origin on day +60 after the allograft or second allogeneic HSCT (primary graft rejection), or as loss of donor cells after transient
engraftment of donor-origin hematopoiesis, together with return to erythrocyte transfusion dependence for TM patients or together with reappearance of symptoms related to the original disorder for patients with SCD (secondary graft rejection). c) GVHD: acute and chronic GVHD were diagnosed and graded in terms of severity at each transplant Centre according to the Seattle criteria.\textsuperscript{23,24} Patients surviving for more than 14 and 100 days post-transplantation were evaluated for acute and chronic GVHD occurrence, respectively. Treatment of both acute and chronic GVHD was administered according to the protocols in use at each single Institution.

**Statistical analysis**

Analysis used January 1, 2012 as the report date, i.e. the day at which the Centers locked up data on patient outcomes. Patients were censored at the time of death or at last follow-up. Probabilities of survival, DFS and EFS were estimated by the Kaplan-Meier product-limit method and expressed as percentage + standard error (SE). For calculation of DFS, the date when death, graft failure, or last follow-up occurred was captured, while, for calculation of EFS, the date when death, graft failure, extensive chronic GVHD or last follow-up occurred was considered. The probabilities of neutrophil recovery, primary graft failure, acute and chronic GVHD were expressed as cumulative incidence curves + SE, in order to adjust the analysis for competing risks.\textsuperscript{25,26} In detail, the cumulative incidence of graft failure was defined as the probability of experiencing primary graft rejection at time $t$; death without developing graft failure was considered a competing event.

Univariate prognostic analyses used the log-rank test, testing the influence on each end point of patient characteristics (age, sex, body weight, human cytomegalovirus serology, ABO compatibility), donor characteristics (age, sex, female/male donor-recipient combination), disease factors (original disease, class of risk for TM patients) and transplantation-related factors (number of nucleated cells collected per Kg body weight, type of conditioning regimen, use of MTX for GVHD prophylaxis). Continuous covariates were encoded as binary covariates after
dichotomization, using the median as cut-off. Multivariable prognostic analyses were performed for DFS, the principal end point, using Cox proportional regression model\textsuperscript{27}. The following variables were included in the multivariate model: type of stem cell source, age at transplantation, year of transplant and type of diagnosis.

All p-values were two-sided, with values of 0.05 or less indicating statistical significance. For statistical analysis, we used the SAS (SAS Inc, Cary, NC) software package.
Results

The median follow-up after BMT and CBT was 70 months (range 12-165) and 70 months (range 12-151), respectively (p=NS), among surviving patients.

**Graft failure; kinetics of neutrophil and platelet engraftment.**

Graft failure (defined as an absence of donor engraftment, autologous hematopoietic reconstitution or receiving a second transplantation) was observed in 29/389 (7.4%) and 10/96 (10.4%) patients given BMT and CBT, respectively (p=0.33). Thirty-three patients had primary graft failure, while 6 experienced secondary loss of the graft after transient engraftment of donor cells. The cumulative incidence of primary graft failure was 6+4% and 9+4%, in BMT and CBT, respectively (p=0.77). Three of the 33 patients who had primary graft failure (1 given BMT and 2 CBT) were successfully re-transplanted from the same donor after 64, 46 and 48 days after the first transplant, respectively. All these 3 patients engrafted and are alive and disease-free with a follow up of 124, 47 and 138 months, respectively. The 2 patients who had been transplanted with cord blood cells had received MTX as GVHD prophylaxis in the first transplant. Six patients experienced secondary graft failure after CBT, at a median time of 151 days (range 51-202 days). The number of TM and SCD patients experiencing either primary or secondary graft failure after CBT was 8 and 2, respectively. Chimerism analysis in the 6 CBT recipients who had secondary graft failure showed the presence of mixed chimerism in 4 and of full donor chimerism in 2 after the initial period of hematopoietic recovery. The cumulative incidence of neutrophil recovery at day 60 was 92+1% and 90+4% in patients transplanted with BM and CB cells, respectively (p=0.01). CI of neutrophil engraftment was 91% and 94% for TM and SCD respectively (p=0.31).

For patients who engrafted, the median time to neutrophil recovery after BMT and CBT was 19 days (range, 8-56) and 23 days (range, 9-60, p=0.002), respectively. The median time to platelet recovery in BMT and CBT recipients was 25 days (range, 9-10) and 38 days (range, 13-125),
respectively (p=0.004). The CI of platelet recovery at 180 days was 85±5% after BMT and 83±5% after CBT. Chimerism analysis was available in 246 and 75 patients after BMT and CBT, respectively, and the proportion of long term sustained mixed chimerism was 22% and 37% after BMT and CBT, respectively (p=0.01).

Acute and chronic GVHD

Eighty-three (21%) out of the 389 patients given BMT and 11 (11%) of the 96 receiving CBT experienced grade II-IV acute GVHD; no patient developed grade IV acute GVHD after CBT, as compared to 8 (2%) of those transplanted with BM cells. The CI of grade II-IV acute GVHD after BMT was 21+2%, whereas, after CBT, it was 10+3% (p=0.04, see also Figure 1a).

Chronic GVHD occurred in 42 out of the 355 patients at risk (i.e. those surviving more than 100 days after the allograft) given BMT and in 6 out of the 84 CBT recipients. Twenty-eight patients with chronic GVHD had a previous history of acute GVHD (26 had received BM and 2 CB cells). Twelve of the 42 BMT patients had extensive chronic GVHD compared to none of CBT recipients (all the 6 CB patients developed limited chronic GVHD). The CI of chronic GVHD at 6 years in BMT recipients was 12+2%, whereas in CBT recipients, it was 5+3% (p=0.12). The CI of extensive chronic GVHD at 6 years in BMT recipients was 5+9%, whereas in CBT recipients, it was 0%. A multivariate analysis for acute or chronic GVHD could not be performed due to the small number of CBT recipients developing these complications.

Transplantation-related mortality

Overall, 21 patients died of transplantation-related causes: 18 after BMT and 3 after CBT. Details on the different causes of death are shown in Table 2. GVHD was the most frequent cause of death in patients after BMT, while no CBT recipient died of GVHD.
Overall, disease-free and event-free survival

Three-hundred and seventy-one patients are alive after BMT; 342 also survive disease-free. Of the 96 CBT recipients, 93 are alive and 79 survive disease-free. The 6-year Kaplan-Meier estimates of OS after BMT and CBT were 95+1% and 97+2%, respectively (Figure 1b) (p=0.92), while estimates of DFS after BMT and CBT were 88+2% and 83+4%, respectively (Figure 1c) (p=0.18). In order to have a better estimation of the quality of life of surviving patients, we also calculated the 6-year Kaplan-Meier estimate of EFS (which considers also the occurrence of extensive chronic GvHD as an event): it was 85+2% and 83+2% after BMT and CBT, respectively (p=0.36, see also Figure 1d).

A larger proportion of treatment failures occurred in patients with TM compared to those with SCD, the 6-year DFS being 84+2% and 92+2%, respectively (p=0.04). Indeed, the 6-year DFS was 86+2% and 92+2% (p=0.07), after BMT for TM and SCD, respectively; the 6-year DFS after CBT for TM and SCD was 80+5% and 90+5% (p=0.24), respectively. In a multivariate analysis, a diagnosis of SCD was the only variable favorably influencing the DFS probability among all the patients included in this study (Hazard Ratio, HR, 0.52, 95% confidence interval, CI, 0.28-0.97, p=0.04).

In a subgroup analysis that focused only on the 96 CBT recipients, the outcome was significantly influenced by the use of MTX to prevent GVHD. Patients who did not or who did receive MTX for GVHD prophylaxis had a 6-year Kaplan-Meier DFS estimates of 90+4% and 60+11%, respectively (p<0.001), regardless of the conditioning regimen that was administered. The use of MTX was also a significant variable in the multivariate analysis of the factors influencing DFS probability after CBT (HR 3.81, CI 1.40-10.87, p=0.004). The only other variable that was associated with outcome was the period in which transplantation was performed: patients who received CBT after 1999 had a significantly better outcome (HR 0.033, CI 0.12-0.89, p=0.02) compared to those treated earlier. Other factors that correlated with a better outcome after CBT included the use of thiotepa in the
conditioning regimen and, for patients with TM, belonging to class I of the Pesaro classification (data not shown). However, these variables were not significant in multivariate analysis. The number of cells infused per Kg of recipient body weight influenced neither the probability of DFS nor that of sustained engraftment of donor cells (data not shown); however, it is noteworthy that most patients received a sufficient number of TNCs (median 3.9 x10^7/kg, range 1.5-14).

**Discussion**

This multicenter study comparatively evaluated, after a long observation time, the outcome of a large population of patients with TM and SCD given either BMT or CBT from an HLA-identical sibling. Despite the limitations intrinsic to retrospective registry-based analysis, our results indicate that both CBT and BMT are equally effective in curing patients with the 2 most common of the major hemoglobinopathies, provided that an HLA-identical sibling is used as donor.

CBT from an HLA-identical sibling is widely used to treat children affected by a number of hematologic and non-hematologic conditions. 16,17,28 The advantages of CBT previously reported include a lower incidence and severity of GVHD, ease of hematopoietic stem cell procurement, negligible risk of transmission of viral infections and no donor risk/attrition.15,29 In this analysis, we found that the incidence of grade II-IV acute GVHD was lower in our patients transplanted with CB cells than in those receiving BMT, this confirming previous observations,16,28 and that grade IV acute GVHD was not recorded after CBT. Moreover, while none of the CBT recipients died of GVHD, roughly half of the fatal events after BMT were caused by GVHD. Another advantage of CBT is the complete absence of extensive chronic GVHD, which was a complication in12 out of the 355 patients at risk who had been transplanted with BM cells. Chronic GVHD can have a particularly devastating effect for patients with nonmalignant disorders,30 who, in contrast to leukemia patients, do not benefit at all from the graft-versus-leukemia effect associated with development of chronic GVHD. The quality of life of patients with extensive chronic GVHD may
certainly be worse than that of TM or SCD patients treated with supportive therapy, and the risk of chronic GVHD is often considered as a reason not to pursue HSCT in children who inherit these disorders. We cannot exclude that the younger age of CBT recipients could have contributed to the lower incidence and severity of GVHD in comparison to BMT recipients.

We found that both neutrophil and platelet recovery were delayed after CBT in comparison to BMT, but this feature was not associated with an increased risk of fatal infectious or hemorrhagic complications. The delayed hematological recovery observed in this cohort confirms previously published data reported in patients transplanted with CB cells from an HLA-identical sibling in comparison to BMT recipients.\(^\text{16}\)

Occurrence of both primary and secondary graft failure remains a major limitation of HLA-identical sibling CBT in patients with TM and SCD, as it occurred in 10 of the 96 patients enrolled in this study. It occurred more frequently among TM patients. An increased risk of graft failure in CBT recipients compared with patients given BMT from an HLA-identical donor has already been reported.\(^\text{16,21,28}\) Best results in patients given CBT can be obtained by optimizing GVHD prophylaxis and the conditioning regimen used. Indeed, our results confirm the unfavorable impact of administering MTX for GVHD prophylaxis after CBT in patients with TM or SCD.\(^\text{21}\) In addition, the low risk of GVHD after HLA-identical sibling CBT raises concerns in general about including MTX in GVHD prophylaxis schema. As a consequence, the inclusion of MTX in GVHD prophylaxis has decreased over time.\(^\text{29,31}\) In patients with SCD receiving either CBT or BMT from an HLA-identical sibling the use of ATG has been reported to lower the incidence of graft failure.\(^\text{9}\)

Although we observed fewer graft failures in the cohort of CBT recipients given ATG, this favorable effect was not statistically significant (data not shown). Preparative regimens including thiota, a potent myeloablative agent which can shift the balance in the competition between donor and recipient hematopoietic stem cells towards the donor, may also improve the outcome of patients with TM or SCD receiving CBT.
Although the range was rather large (see also Table 1 for details), the median number of cells infused in our CBT recipients was high ($3.9 \times 10^7$/Kg recipient body weight), reaching the minimal number of cells available before thawing which has been recommended by the Eurocord group (i.e. at least $3.5 \times 10^7$/Kg recipient body weight). The achievement of this threshold was certainly facilitated by the young age of patients transplanted with CB cells. In the event that the number of nucleated cells in the CB collection is judged too few to ensure engraftment of donor cells after CBT, there is also the possibility of supplementing CB cells with BM harvested from the same sibling donor, although it has not yet been proved that this strategy will improve the recipient’s outcome.

A previously published study on 27 TM recipients clearly demonstrated that sustained donor/recipient mixed chimerism of circulating leukocytes can be found in a significant proportion of patients given CBT from an HLA-identical sibling. We also found that a greater proportion of CBT recipients develop sustained mixed chimerism in comparison to patients given BMT. These data suggest that CBT, more often than BMT, promotes the development of a state of reciprocal tolerance between recipient and donor cells. A threshold of the percentage of donor cells sufficient to ameliorate/resolve the symptoms of the hemoglobin disorders has not yet been firmly established, although it has been suggested to be as low as 10% and 20% in SCD and TM, respectively. While the use of CB cells from an HLA-identical sibling was found to be safe and largely successful in patients with hemoglobinopathies, the outcome of patients given unrelated donor CBT is far less satisfactory. An unacceptably high rate of primary graft failure and transplantation-related mortality has been reported, resulting in a probability of DFS of only 21% and 50% for TM and SCD, respectively. In order to explain these unsatisfactory results, it must be noted that in non-malignant disorders, a combination of donor-recipient mismatching at HLA loci and a limited CB cell dose play a major role in engraftment, GVHD and transplantation-related mortality. In view of these findings, the results of unrelated donor CBT for TM and SCD might be improved by selecting CB units that are HLA matched with the recipient and that contain a sufficient number of
nucleated cells to ensure engraftment. In general, however, unrelated donor CBT in patients with TM and SCD is not recommended outside of well-designed clinical trials.

Survival rates in our patients with hemoglobinopathies given related CBT have improved over time. By analogy to children transplanted for hematological malignancies,\(^{17}\) this might be explained by eliminating the use of MTX for GVHD prophylaxis, as well as by growing experience with CBT, resulting into better treatment of infections and other transplantation-related complications.

With the note of caution that CBT recipients were younger and transplanted in a more recent period, after adjusting for differences in multivariate analysis, this retrospective registry-based study demonstrates that CBT and BMT from an HLA-identical sibling offer comparable probability of long-term cure of the most common hemoglobinopathies. Thus, CB from an HLA identical family donor appears to be a suitable source of stem cells for HSCT of TM and SCD patients, provided that an adequate number of cells (>3.5 x 10^7/kg) have been collected and cryopreserved and that MTX be not used as part of the GVHD prophylaxis. Moreover, CBT avoids discomfort caused by a marrow harvest. In view of these results, directed-donor family banking activities aimed at optimizing the cryopreservation and storage of CB of a newborn sibling should be encouraged and closely monitored to ensure that common standards are followed.\(^{38}\) Future studies on the occurrence and severity of late effects after either CBT or BMT from an HLA-identical sibling are desirable for a comprehensive and meaningful comparative evaluation of these 2 transplant options.
References


Author contribution:
FL, NK, EG, MCW and VR designed the study, NK, AR, and VR prepared and analyzed data. FL, AR, and VR wrote the paper, AG, IR, CKL, FB, CV, JHD, JS, RW, CC, FP, EA, GS provided cases for the study. All authors edited and approved the manuscript.

Disclosure: The authors have no conflict of interest to declare

Transplant centers (n=28) (in alphabetical order by country) contributing for cases
Austria - Vienna - St. Anna Kinderspital
Belgium - Brussels - Cliniques Universitaires St. Luc
Bulgaria - Sofia - Childrens Oncohematology Hospital
France - Créteil - Henri Mondor Hospital
France - Paris - Necker Hospital
France - Paris - Robert Debré Hospital
France - Paris - Saint-Louis Hospital
France - Rouen - Charles Nicolle-Hospital
France - Strasbourg - Hautepierre Hospital
Germany - Düsseldorf - Universitaetsklinikum
Greece - Athens - St. Sophia Children's Hospital
Hong Kong - Shatin - Prince of Wales Hospital
India - Chennai - Apollo Speciality Hospital
Iran - Teheran - Shariati Hospital
Israel - Jerusalem - Hadassah University Hospital
Israel - Petach-Tikva - Schneider Children's Medical Center of Israel
Italy - Pavia - Fondazione IRCCS Policlinico San Matteo
Italy - Roma Univ.La Sapienza
Italy - Torino - Ospedale Infantile Regina Margherita Onco-Ematologia Pediatrica
Spain - Palma De Mallorca - Hospital Universitari Son Dureta
Sweden - Lund - University Hospital
Turkey - Ankara - University Faculty of Medicine
Turkey - Ankara Cebeci - University of Ankara
United Kingdom - Manchester - Royal Manchester Children's Hospital
United Kingdom - Birmingham - Birmingham Children Hospital
United Kingdom - Leeds - Mid Yorkshire Hospitals NHS Trust
United Kingdom - London - Imperial College Hammersmith Hospital
USA - Oakland- Sibling Donor Cord Blood Program
Table 1. Patient, donor and transplant characteristics of patients given BM or CB transplantation for hemoglobinopathies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>BMT (n=389)</th>
<th>CBT (n=96)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age at transplantation, years (range)</td>
<td>8.1 (0.7 - 24)</td>
<td>5.9 (2 - 20)</td>
<td>0.02</td>
</tr>
<tr>
<td>Patient sex, male/female</td>
<td>200/189</td>
<td>48/48</td>
<td>0.82</td>
</tr>
<tr>
<td>Median body weight, Kg (range)</td>
<td>23 (7-71)</td>
<td>19 (10-60)</td>
<td>0.01</td>
</tr>
<tr>
<td>not available</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Donor sex, male/female</td>
<td>196/193</td>
<td>48/48</td>
<td>0.87</td>
</tr>
<tr>
<td>Median donor age, years (range)</td>
<td>9.0 (0.2-30)</td>
<td>---</td>
<td>&lt;0.01</td>
</tr>
</tbody>
</table>

**Diagnosis**

- Thalassemia major (TM): 259 (67%) vs 66 (69%) (0.55)
- Sickle cell disease (SCD): 130 (33%) vs 30 (31%)

**Pesaro class for TM patients**

- Class 1: 86 (33%) vs 40 (61%) (<0.01)
- Class 2: 122 (31%) vs 23 (35%) (<0.01)
- Class 3: 51 (13%) vs 2 (4%)

**Previous CNS involvement at time of transplantation in patients with SCD**

- Yes: 57 (56%) vs 16 (54%) (0.83)
- No: 73 (44%) vs 14 (46%)

**Patient HCMV serology**

- Positive: 142 (37%) vs 30 (35%) (0.70)
- Negative: 239 (63%) vs 61 (65%)

**Median number of nucleated cells infused \(x10^8/Kg\) of recipient body weight (range)**

- Not available: 46 vs 2 (< 0.01)

**ABO compatibility**

- Compatible: 248 (66%) vs 63 (70%) (0.44)
- Minor incompatibility: 48 (13%) vs 10 (12%)
- Major incompatibility: 77 (21%) vs 22 (28%)

**Median year of transplantation (range)**

- 1999 (94-05) vs 2001 (94-05) (< 0.01)

**Conditioning regimen**

- Bu/Cy: 345 (89%) vs 53 (56%)
- Bu/Cy/Flu: 16 (4%) vs 5 (5%)
- Bu/Flu/TT: 27 (7%) vs 21 (22%) (< 0.01)
- Bu/Flu: 0 vs 4 (4%)
- Bu/Cy/TT: 0 vs 10 (11%)

**Use of ATG/ALG**

- Yes: 259 (67%) vs 49 (54%) (< 0.01)
- No: 130 (33%) vs 43 (46%)
- Not available: 5

**GVHD prophylaxis**

- Scheme including MTX: 296 (76%) vs 21 (30%) (< 0.01)
- Scheme without MTX: 93 (24%) vs 73 (70%)

**Not available**

CNS, central nervous system; Bu, busulfan; Cy, cyclophosphamide; TT, thiotepa; Treo, treosulfan; Flu, fludarabine; ATG, Anti-thymocyte globulin; ALG, Anti-lymphocyte globulin; GVHD, graft-versus-host disease; MTX, methotrexate.
Table 2. Causes of death in the study population.

<table>
<thead>
<tr>
<th>Cause</th>
<th>BM recipients</th>
<th>CB recipients</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graft-versus-host disease</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Infections</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Organ failure</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>18</strong></td>
<td><strong>3</strong></td>
<td><strong>21</strong></td>
</tr>
</tbody>
</table>
Figure Legends

**Figure 1a.** Cumulative incidence of grade II-IV acute GVHD (aGVHD) for patients given bone marrow and cord blood transplantation.

**Figure 1b.** Kaplan-Meier estimate of overall survival (OS) for patients given bone marrow and cord blood transplantation.

**Figure 1c.** Kaplan-Meier estimate of disease-free survival (DFS) for patients given bone marrow and cord blood transplantation. In the calculation of DFS, both death and graft failure were considered events.

**Figure 1d.** Kaplan-Meier estimate of event-free survival (EFS) for patients given bone marrow and cord blood transplantation. In the calculation of EFS, both death, graft failure and extensive chronic GVHD were considered events.
Figure 1a
Figure 1b

- CB (n=96) 97±3%
- BM (n=389) 95±1%

p=0.92
Figure 1c

BM (n=389, ev=47) 88±2%

CB (n=97, ev=17) 83±2%

p=0.18
Figure 1d

BM (n=389, ev=56) 85±2%

CB (n=97, ev =17) 83±2%

p=0.36